Производство оптического волокна начинается со стеклянной трубки. Ее примерные габариты можно оценить по рис. 1. Эта трубка промывается в кислоте и дистиллированной воде, для устранения различных загрязнителей и жиров с ее поверхности. Далее она устанавливается в зажимы тепло-механического станка.
Рисунок 1 – Стеклянная трубка и ее установка в тепло-механический станок
Трубка вращается со скоростью 60 оборотов/мин. Под ней плавно, со скоростью 20 см/мин двигается горелка, которая равномерно разогревает трубку до температуры 16000С. Одновременно с этим, в трубку подается смесь газов: SiCl4, GeCl4, BCl3 и кислород О2, которые при температуре 16000С вступают в химическую реакцию. В результате реакции на внутреннюю стенку трубки выпадает осадок в виде белого порошка, который в последствии плавится и кристаллизируется. Таким образом постепенно заполняется внутренняя часть трубки и формируется сердцевина оптического волокна.
Рисунок 2 – Процесс формирования сердцевины оптического волокна
Предформа извлекается из тепло-механического станка и устанавливается в зажимы установки вытягивания волокна (вытяжной башни). Процесс вытягивания волокна включает несколько этапов, каждый из которых рассмотрим отдельно.
Рисунок 3 – Установка вытягивания волокна
Торец предформы нагревается до температуры 20000С, вследствие чего предформа начинает растягиваться и уменьшаться в диаметре.
Лазерный детектор работает в паре с детектором натяжения, тем самым поддерживая диаметр оптического волокна равный 125 мкм. При увеличении диаметра волокна, лазерный детектор подает сигнал на детектор натяжения. Последний увеличивает усилие натяжения, что приводит к уменьшению диаметра волокна. И наоборот: в случае, если зафиксировано уменьшение диаметра волокна, уменьшается усилие натяжения и диаметр увеличивается. Таким образом, диаметр волокна не одинаковый по всей его длине, а постоянно колеблется около 125 мкм. В результате, при выполнении сварных соединений, встречаются ситуации, когда одно из сращиваемых волокон имеет диаметр больше (к примеру 127 мкм), другое – меньше (к примеру 123 мкм).
Это приводит к различным значениям потерь на соединении при измерении со стороны А в сторону В, и наоборот.
Следствием описанного выше, является требование выполнения двустороннего измерения интегральных вносимых потерь (при помощи оптических тестеров или тестовых наборов) с последующим определением среднего значения по формуле:
Рисунок 4 – Несоответствие диаметров волокна
Именно по этой причине при строительстве магистральных ВОЛС требуют использовать кабельные барабаны в порядке их заводской нумерации.
Оптическое волокно без повреждений имеет такое же усилие на разрыв как и стальная нить аналогичного диаметра. Это и не удивительно, ведь обычное оконное стекло тоже нелегко разорвать. Но стоит лишь нанести царапину стеклорезом (а в случае с оптическим волокном – просто прикоснуться к любой металлической поверхности) и задача существенно упрощается. Именно для защиты оптического волокна от механических повреждений а также для защиты от попадания воды и загрязнителей, на поверхность волокна наносится первичное буферное покрытие. Оно представляет собой акриловый лак, который мы снимаем стриппером в ходе подготовки волокна к сварке. Далее нанесенный лак сушится в сушильной печи при помощи ультрафиолетового излучения. Полученное оптическое волокно сматывается на катушки (примерно 20 км на каждую) и поставляется на заводы по производству кабеля или потребителю.
Рисунок 5 – Катушка оптического волокна
Рекомендуем просмотреть вебинар на тему:
Видео 1 – вебинар “Монтаж и диагностика ВОЛС на сети доступа. Введение, особенности архитектуры PON”.
Чтобы задать вопрос докладчику вебинара отправьте письмо на адрес: info@fibertop.ru
Видео 2 – Опыт Джона Тиндаля
Историческая справка: В 1870 г английский физик Джон Тиндаль продемонстрировал возможность управления светом на основе внутренних отражений. Продемонстрированный опыт показал, что свет может распространяться не только по прямой линии, как учит нас школьная программа, но и по любой изогнутой траектории. Для этого необходимо соблюсти лишь одно условие: обеспечить чтобы свет распространялся в более плотной среде (в опыте – вода), которая окружена менее плотной средой (в опыте – воздух). По этому принципу и построено оптическое волокно: свет распространяется по более плотной сердцевине, которая в свою очередь окружена менее плотной – оболочкой.
Видео 3 – Производство оптического волокна
Подписаться на рассылку статей