Окно прозрачности оптического волокна – это длина волны, распространяясь на которой сигнал затухает меньше чем на других длинах волн. Для простоты понимания сути процесса, рекомендую обратить внимание на обычное оконное стекло: если оно чистое (прозрачное) то свет в него проходит легко. 

На самом деле оптическое волокно имеет не одно, а несколько окон прозрачности, основные и самые используемые из них находятся на длинах волн 850 нм, 1300 нм, 1550 нм.

Окно прозрачности оптического волокна

Рисунок 1 – окна прозрачности ступенчатого оптического волокна

 

Реже используются волокна с четвертым (1580 нм) и пятым (1400 нм) окнами прозрачности. А для построения систем волнового уплотнения на магистральных ВОЛС все чаще используются волокна имеющие хорошую прозрачность во всём ближнем инфракрасном диапазоне.

Рисунок 2 – спектральные диапазоны оптического волокна

 

На сегодня утверждены следующие спектральные диапазоны в интервале 1260…1675 нм

Обозначение
Диапазон, нм
Наименование (рус) Наименование (англ)
O 1260…1360 Основной Original
E 1360…1460 Расширенный Extended
S 1460…1530 Коротковолновый Short wavelength
C 1530…1565 Стандартный Conventional
L 1565…1625 Длинноволновый Long wavelength
U 1625…1675 Сверхдлинноволновый Ultra-long wavelengh

Говоря про длины волн и окна прозрачности сам собой напрашивается вопрос: – где вообще находятся эти длины волн, как это представить визуально? Для начала обозначим, что длина волны – это величина обратная к частоте. λ = 1/F. Единица измерения длины волны – нм (нано метр), что равно 10−9 метра. Весь частотный диапазон можно разделить на: спектр низких частот (телефонные аппараты), высоких частот (радио, телевидение), микроволновый диапазон (микроволновые печи, мобильные телефоны, WiFi), оптический диапазон, спектр рентгеновского излучения.

Окно прозрачности оптического волокна - распределение частотного диапазона

Рисунок 3 – распределение частотного диапазона

 

Рассмотрим оптический диапазон более детально. Он разделяется на ультрафиолетовый, видимый и инфра красный. Известно, что белый солнечный свет при помощи дифракционной решетки легко разделяется на 7 цветов. Тепло же, которое мы ощущаем находясь под солнцем – это поток излучения в инфра красном диапазоне, называемый еще “тепловым”. Все рабочие длины волн, на которых осуществляется передача информации в оптическом волокне, находятся как раз в инфра красном диапазоне. Такое излучение не безопасно для человека, поэтому при работе с оборудованием ВОЛС требуется тщательное соблюдение правил техники безопасности.

распределение длин волн оптического диапазона

Рисунок 4 – распределение длин волн оптического диапазона

Видео обзор спектров излучения “Пределы света. Что такое свет и цвет?

Видео запись вебинара “Теоретические основы передачи информации в ВОЛС”

Чтобы задать вопрос докладчику вебинара отправьте письмо на адрес: info@fibertop.ru

Стенограмма вебинара "Механизмы возникновения потерь и отражений сигнала в оптическом волокне"

0:09:09

Может быть, вы помните из курса школы или института, что оптическое волокно или частицы оптического волокна иногда проявляют свои свойства как частица, а иногда как волна. Это так называемый корпускулярно-волновой дуализм. Как волна, свет проявляет себя. Собственно, как и все другие электромагнитные волны, они состоят из электрической магнитной составляющей, которая имеет все те же параметры: частота, период. Электрическая магнитная составляющая находится в ортогональных проекциях относительно друг друга. Рассмотрение в таком виде достаточно сложно, поэтому далее мы будем использовать представление частицы света фотона как частицы. Это не повлияет на наше понимание, но зато облегчит существенно.

0:10:12

Начнём с того, в каком же диапазоне частот передаётся информация в оптическом волокне. Если рассмотреть, в общем, все частоты, то

  1. Низкочастотный спектр, в котором работают обычные телефонные аппараты 0,3-3,4 кГц.
  2. Высокочастотный спектр: телевидение, радио.
  3. Микроволновый диапазон: микроволновые печи, мобильные телефоны, Wi-Fi тоже в этом диапазоне работает.
  4. Оптический диапазон
  5. Спектр рентгеновского излучения.

0:10:52

Рассмотрим более подробно оптический диапазон. Он включает ультрафиолет, видимые длины волн (видимые цвета) и инфракрасный диапазон. Хочу привести небольшой пример. Вспомните, как летом на солнце мы чувствуем такие эффекты: во-первых, нам тепло, во-вторых, мы загораем. Ну и светло.

  1. Светло нам потому, что если все видимые цвета смешать, то получается белый свет, от которых нам и светло.
  2. Загораем из-за действия на нас ультрафиолетового света
  3. Тепло нам от воздействия света в инфракрасном сдиапазоне.

Поэтому я хочу, чтобы вы запомнили: инфракрасный свет или все длины волн, которые находятся в инфракрасном диапазоне, очень тёплые.

0:11:45

Поэтому если посмотреть в источник света, то это лазерный поток попадает на сетчатку глаза и может пережечь её. Очень жаркий такой поток. Поэтому не рекомендую и по технике безопасности всегда объясняю, что смотреть в источник нельзя и направлять его нельзя на отражающие предметы, на зеркало, металлические, глянцевые поверхности, чтобы оно не отразилось и не попало никому в глаза.

0:21:31

Чем же отличается одномодовое волокно от многомодового?

  • Диаметр сердцевины. Одномодовое волокно имеет диаметр сердцевины - 9 мкм чаще всего, но иногда пишут 8 мкм, вообще 9 ± 2 мкм. У многомодового волокна диаметр сердцевины равен 50 мкм (новый стандарт) и 62,5 мкм (старый стандарт). Сейчас используются и те, и те, но 62,5 мкм как-то медленно уходит. Оболочка, что у одномодового, что и у многомодового волокна одинакового диаметра – 125 мкм.
  • Рабочие длины волн, которые чаще всего используются. В одномодовом волокне: 1310-1550 нм, у многомодового: 850-1300 нм. Хотя если говорить про одномодовое волокно, которое используется, например, в пассивных оптических сетях, то там используют и другие длины волн – например, 1490 нм или 1625 нм.
  • Тип источника: в одномодовом волокне используется лазер, на следующем слайде поймём почему, в многомодовом используется светодиод.
  • Затухание в одномодовом волокне составляет 0,2-0,5 дБ/км, у одномодового – 1-3 дБ/км.
  • Область применения: в телекоммуникациях в основном используется одномодовое волокно, а многомодовое чаще всего используется в локальных сетях, центрах обработки данных и т. д., в тех сетях, которые имеют небольшую протяжённость.

0:23:23

 

Здесь хочу немножко разобрать понятие моды оптического волокна. Наверняка вы слышали фразы "Одномодовое волокно", "Многомодовое волокно". Что же такое мода? Если говорить простыми словами, то мода оптического волокна – это путь распространения одного из сигналов. Многомодовое волокно имеет диаметр сердцевины, как мы ранее говорили, 50 мкм или 62,5 мкм. Сердцевина одномодового – 8 мкм. Намного уже. Если светить светодиодом и в одномодовое и многомодовое волокно, ты мы видим, что в многомодовое волокно попадает несколько лучей и каждый из них имеет свою траекторию распространения, свой путь. Так как их здесь много, то это и есть многомодовое волокно. В одномодовом сердцевина очень узкая, поэтому туда попадает только один лучик. И такое волокно называется одномодовым.

0:25:11

Конечно, если таким образом светить, то мощность сигнала, который передаётся в данном случае по многомодовому кабелю или волокну, намного больше, чем мощность сигнала, который передаётся по одномодовому волокну. Поэтому в качестве источника света в одномодовых системах передач используется не светодиод, как здесь указано, а лазер. Он имеет более плотный спектр передачи.

0:25:17

Сейчас мы видим спектральную характеристику. О мощности передачи говорит площадь участка импульса. Площади характеристик для светодиода и лазера примерно равны, отличается только их форма. Поэтому, за счёт разности диаметров сердцевин, в качестве источника света для многомодового волокна можно использовать даже светодиод. А в одномодовых ВОЛС - пользоваться только источником лазерного света.

Поэтому и применение таким образом распределилось. Многомодовые кабели связи используются, как я говорил, в локальных сетях и центрах обработки данных, в тех местах, где расстояния очень маленькие. По стандартам, где-то до 2 км, хотя можно и чуть больше. В таких случаях хоть потери и больше 1,3 дБ/км, но зато сама система стоит дешевле. Потому что лазер – устройство дорогое, а если вместо лазера использовать светодиод, то общая стоимость системы значительно удешевляется. Поэтому если говорить про передачу информации на маленьких дистанциях, то это очень выгодное предложение. Тем более что никакие виды электромагнитных помех не влияют на это волокно. Соответственно, даже вопрос возникает: передать на 10 м или использовать высоко экранированный кабель 7-й категории или использовать оптическое волокно без всяких экранов? Всё равно информация передастся в очень хорошем качестве.

0:27:12

Окна прозрачности – это тоже очень важный параметр. Попытаюсь объяснить его тоже простыми словами. Что такое окно прозрачности? Это длина волны, на которой происходит минимальное затухание. Если окно прозрачное, то света проходит больше. Если окно непрозрачное, грязное, то света проходит меньше. То же самое и здесь. (Окна прозрачности на диаграмме находятся на длинах волн 850 нм (I), 1300 нм (II), 1550 нм (III).

Это характеристика для обычного оконного стекла. Если говорить про многомодовый кабель, то у многомодового кабеля затухание начинает повышаться примерно здесь (с длины волны 1300 нм) и примерно таким образом (презентатор показывает курсором мышки).

В одномодовом затухание распределяется таким образом. (презентатор показывает курсором мышки). 

Поэтому в одномодовом используется 1310 нм, 1550 нм и выше – до 1650 нм. У одномодового – 850-1300 нм.

Смотрите также:



Подписаться на рассылку статей


Заказать звонок

- Email
- Confirm
Имя *
Номер телефона *
Комментарий
Согласие на отправку персональных данных *


* - Обязательное для заполнения

FiberTop
Золоторожский вал, д.34 стр.6, офис 7 111033 Москва
+7 499 707-13-68 info@fibertop.ru от 99 руб до 29 000 руб FiberTop